
召唤100多位学者打分,斯坦福新研究:「AI科学家」创新确实强
召唤100多位学者打分,斯坦福新研究:「AI科学家」创新确实强近日,一篇关于自动化 AI 研究的论文引爆了社交网络,原因是该论文得出了一个让很多人都倍感惊讶的结论:LLM 生成的想法比专家级人类研究者给出的想法更加新颖!
近日,一篇关于自动化 AI 研究的论文引爆了社交网络,原因是该论文得出了一个让很多人都倍感惊讶的结论:LLM 生成的想法比专家级人类研究者给出的想法更加新颖!
随着大语言模型展现出惊人的语言智能,各大 AI 公司纷纷推出自己的大模型。这些大模型通常在不同领域和任务上各有所长,如何将它们集成起来以挖掘其互补潜力,成为了 AI 研究的前沿课题。
近期,商汤科技 - 南洋理工大学联合 AI 研究中心 S-Lab ,上海人工智能实验室,北京大学与密歇根大学联合提出 DreamGaussian4D(DG4D),通过结合空间变换的显式建模与静态 3D Gaussian Splatting(GS)技术实现高效四维内容生成。
AI 研究发展的主要推动力是什么?在最近的一次演讲中,OpenAI 研究科学家 Hyung Won Chung 给出了自己的答案。
OpenAI 开始训练下一个前沿模型了。在联合创始人、首席科学家 Ilya Sutskever 官宣离职、超级对齐团队被解散之后,OpenAI 研究的安全性一直备受质疑。
Meta 正在不遗余力地想要在生成式 AI 领域赶上竞争对手,目标是投入数十亿美元用于 AI 研究。这些巨资一部分用于招募 AI 研究员。但更大的一部分用于开发硬件,特别是用于运行和训练 Meta AI 模型的芯片
AI 研究走过的最大弯路,就是过于重视人类既有经验和知识。